Abstract

Abstract Microbial biomass phosphorus (P) can play an important role in P cycling and availability to plants by acting as a source (remineralization) or sink (immobilization) of phosphate ions (iP). To assess the role of the microbial P pools, both the dynamics (i.e. the turnover) and the size of the microbial P pools were studied in forest soils. Combining an isotopic dilution method with a modelling approach, we showed the existence of two pools of microbial P with different dynamics and therefore of different importance in soil P availability and cycling. In particular, we showed that the largest pool of microbial P (80%) had a fast turnover (nine days). Microbial P increased with an increase in soil organic matter and represented up to 53% of total P in contrasting forest soils. By combining these results with the turnover times of microbial P obtained in the modelling study, we evaluated that 8.5–17.3 kg P ha −1 of microbial P could turn over in a few days. This suggests that microbial biomass P is a potentially significant source of available iP, and that micro-organisms can play a major role in P cycling in the forest studied here. However, microbial biomass can also be in competition with the trees since most of the remineralized P could be immobilized again in the microbial turnover.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.