Abstract
ABSTRACTIn mobile health interventions aimed at behavior change and maintenance, treatments are provided in real time to manage current or impending high-risk situations or promote healthy behaviors in near real time. Currently there is great scientific interest in developing data analysis approaches to guide the development of mobile interventions. In particular data from mobile health studies might be used to examine effect moderators—individual characteristics, time-varying context, or past treatment response that moderate the effect of current treatment on a subsequent response. This article introduces a formal definition for moderated effects in terms of potential outcomes, a definition that is particularly suited to mobile interventions, where treatment occasions are numerous, individuals are not always available for treatment, and potential moderators might be influenced by past treatment. Methods for estimating moderated effects are developed and compared. The proposed approach is illustrated using BASICS-Mobile, a smartphone-based intervention designed to curb heavy drinking and smoking among college students. Supplementary materials for this article are available online.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.