Abstract

Thermal protection of wet suits for aquatic sport (surfing, snorkelling, outdoor swimming) is impacted by design (stretch and fit, type of seams, design of openings) as water coming in and flushing between the skin and suit dramatically increases body heat loss. We developed a test protocol for measuring thermal resistance of a suit on a human subject while performing an activity in water. Six surf suits were compared and two swimming suits differing by thickness and stretch of neoprene, type of seams and neck design.

Highlights

  • Thermal protection of wet suits for aquatic sport (surfing, snorkelling, outdoor swimming) is impacted by design (stretch and fit, type of seams, design of openings) as water coming in and flushing between the skin and suit dramatically increases body heat loss

  • Thermal protection of wet suits for aquatic sport is impacted by design as water coming in and flushing between the skin and suit dramatically increases body heat loss

  • (2) The difference on thermal resistance between active and rest condition is due to water entrance into the suit induced by activity, which we characterised by a leak resistance (m2.K.W-1) in parallel with resistance of rest condition, out of which an effective leak flow was calculated

Read more

Summary

Introduction

Thermal protection of wet suits for aquatic sport (surfing, snorkelling, outdoor swimming) is impacted by design (stretch and fit, type of seams, design of openings) as water coming in and flushing between the skin and suit dramatically increases body heat loss. Water temperature is between 18 and 24°C, no regulation required. Ultra-thin and sensitive heat flux sensors (Captec, size 10mmx 10mmx 0.6mm, 3μV.W-1.m-2) measuring heat loss (W.m-2) and temperature (°C) are taped on skin of a human subject (19 sensors in total: torso front 5, torso back 5, arm 4, leg 5).

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.