Abstract

Soil databases are very important for assessing ecosystem services at different administrative levels (e.g., state, region etc.). Soil databases provide information about numerous soil properties, including soil inorganic carbon (SIC), which is a naturally occurring liming material that regulates soil pH and performs other key functions related to all four recognized ecosystem services (e.g., provisioning, regulating, cultural and supporting services). However, the ecosystem services value, or “true value,” of SIC is not recognized in the current land market. In this case, a negative externality arises because SIC with a positive value has zero market price, resulting in the market failure and the inefficient use of land. One potential method to assess the value of SIC is by determining its replacement cost based on the price of commercial limestone that would be required to amend soil. The objective of this study is to assess SIC replacement cost value in the contiguous United States (U.S.) by depth (0–20, 20–100, 100–200 cm) and considering different spatial aggregation levels (i.e., state, region, land resource region (LRR) using the State Soil Geographic (STATSGO) soil database. A replacement cost value of SIC was determined based on an average price of limestone in 2014 ($10.42 per U.S. ton). Within the contiguous U.S., the total replacement cost value of SIC in the upper two meters of soil is between $2.16T (i.e., 2.16 trillion U.S. dollars, where T = trillion = 1012) and $8.97T. States with the highest midpoint total value of SIC were: (1) Texas ($1.84T), (2) New Mexico ($355B, that is, 355 billion U.S. dollars, where B = billion = 109) and (3) Montana ($325B). When normalized by area, the states with the highest midpoint SIC values were: (1) Texas ($2.78 m−2), (2) Utah ($1.72 m−2) and (3) Minnesota ($1.35 m−2). The highest ranked regions for total SIC value were: (1) South Central ($1.95T), (2) West ($1.23T) and (3) Northern Plains ($1.01T), while the highest ranked regions based on area-normalized SIC value were: (1) South Central ($1.80 m−2), (2) Midwest ($0.82 m−2) and (3) West ($0.63 m−2). For land resource regions (LRR), the rankings were: (1) Western Range and Irrigated Region ($1.10T), (2) Central Great Plains Winter Wheat and Range Region ($926B) and (3) Central Feed Grains and Livestock Region ($635B) based on total SIC value, while the LRR rankings based on area-normalized SIC value were: (1) Southwest Plateaus and Plains Range and Cotton Region ($3.33 m−2), (2) Southwestern Prairies Cotton and Forage Region ($2.83 m−2) and (3) Central Great Plains Winter Wheat and Range Region ($1.59 m−2). Most of the SIC is located within the 100–200 cm depth interval with a midpoint replacement cost value of $2.49T and an area-normalized value of $0.34 m−2. Results from this study provide a link between science-based estimates (e.g., soil order) of SIC replacement costs within the administrative boundaries (e.g., state, region etc.).

Highlights

  • The United Nations (UN) adopted 17 Sustainable Development Goals to sustain global human societies [1]

  • Results from this study provide a link between science-based estimates of soil inorganic carbon (SIC) replacement costs within the administrative boundaries

  • Soil inorganic carbon naturally occurring in the soil provides a substantial monetary value to the U.S and it was evaluated using three key stages: 1. ecosystem services, 2. valuation, 3

Read more

Summary

Introduction

The United Nations (UN) adopted 17 Sustainable Development Goals to sustain global human societies [1]. Soil ecosystem services are important in achieving some of these goals, for example:. Achieve food security and improve nutrition and promote sustainable agriculture; 3. Ensure healthy lives and promote well-being for all at all ages; 6. Ensure availability and sustainable management of water and sanitation for all; and 15. Restore and promote sustainable use of terrestrial ecosystems, sustainably manage forests, combat desertification and halt and reverse land degradation and biodiversity loss” [1]. These goals can be achieved within the framework of ecosystem services, which includes four main categories: 1. These goals can be achieved within the framework of ecosystem services, which includes four main categories: 1. provisioning, 2. regulating, 3. cultural and

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call