Abstract

This paper analyzes the adoption of an off-grid hybrid renewable energy system (HRES) for a high-rise building owned by a public institution in Nigeria. The analysis is based on the comparison between the use of a single criterion and multiple criteria in the selection of the most feasible energy system. The proposed HRES comprises of a wind turbine, diesel generator, photovoltaic (PV), and battery storage system. Hybrid optimization of multiple energy resources (HOMER) software was used to design the HRES for a case study (based on a single criterion-total net present cost), while Evaluation Based on Distance from Average Solution (EDAS) method was used to evaluate the effect of choosing an optimal system based on multiple criteria. Based on the simulations conducted with HOMER, eight feasible HRES (ES1-ES8) were identified. When the feasible HRES were ranked based on total (NPC), the optimal configuration comprises 70 kW PV modules, 20 kW diesel generating set, 40 kW converter, and 70, 3000 Ah batteries. The results obtained from the optimization process were subjected to a multi-criteria analysis based on sustainability principles. The ranking of the first two systems (ES1 and ES2) returned by single criterion (total NPC) remained the same, while changes were observed in the ranks of the remaining systems (ES3-ES8). This modular feasibility study shows that it would be economical to power the entire university using HRES. It is expected that this study would help the university communities and other stakeholders make informed decision during the planning stage of similar projects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call