Abstract

Receptor-mediated endocytosis (RME) has been extensively studied as a method for augmenting the transport of therapeutic devices across monolayers. These devices range from simple ligand-therapeutic conjugates to complex ligand-nanocarrier systems. However, characterizing the uptake of these carriers typically relies on their comparisons to the native therapeutic, which provides no understanding of the ligand or cellular performance. To better understand the potential of the RME pathway, a model for monolayer transport was designed based on the endocytosis cycle of transferrin, a ligand often used in RME drug-delivery devices. This model established the correlation between apical receptor concentration and transport capability. Experimental studies confirmed this relationship, demonstrating an upper transport limit independent of the applied dose. This contrasts with the dose-proportional pathways that native therapeutics rely on for transport. Thus, the direct comparison of these two transport mechanisms can produce misleading results that change with arbitrarily chosen doses. Furthermore, transport potential was hindered by repeated use of the RME cycle. Future studies should base the success of this technology not on the performance of the therapeutic itself, but on the capabilities of the cell. Using receptor-binding studies, we were able to demonstrate how these capabilities can be predicted and potentially adopted for high-throughput screening methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.