Abstract

A direct contact bioassay of thiosulfate utilizing denitrifying bacteria (TUDB) based on inhibition of gas production was deployed to assess the toxicity of naturally contaminated field soils and soils artificially contaminated with heavy metals. Test procedure producing optimal conditions responsible for maximum gas production was 0.5 mL test culture, 1 g soil sample, 80 RPM, and 48 h reaction time. Similarly, the concentrations which generated a 50% reduction in gas production by TUDB for the tested heavy metals were 3.01 mg/kg Cr6+; 15.30 mg/kg Ni2+;15.50 mg/kg Cu2+;16.60 mg/kg Ag+; 20.60 mg/kg As3+; 32.80 mg/kg Hg2+; 54.70 mg/kg Cd2+; and 74.0 mg/kg Pb2+. Because soil toxicity is usually influenced by various physicochemical characteristics, ten reference soils were used to determine the toxicity threshold for evaluating the toxicity of naturally contaminated field soils. All eight contaminated soils were toxic to the TUDB bioassay because their levels of inhibition ranged between 72% and 100% and exceeded the determined toxicity threshold of 10%. Compared to other direct contact assays, the newly developed assay TUDB proved to be very robust, producing highly sensitive data while the different soil physicochemical properties exerted minimal influence on the gas production activity of TUDB. Additionally, the simplicity of the developed methodology coupled with the elimination of pretreatment procedures such as elutriation, and ability to perform generate sensitive data in turbid and highly colored samples makes it, cost-effective, and easily adaptable for the assessment of heavy metal and field contaminated soils when compared with other conventional assays which require sophisticated instrumentation and prolonged testing procedures and times.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call