Abstract
Resolving complexes of closely related and cryptic insect species can be challenging, especially when dealing with rare and protected taxa that are difficult to collect for genetic and morphological analyses. Until recently, populations of the genus Osmoderma (Scarabaeidae), widespread in Europe, were treated as a single species O. eremita (Scopoli, 1763) in spite of observed geographic variation in morphology. A previous survey using sequence data from the mtDNA cytochrome C oxidase I gene (COI) revealed the occurrence of at least two distinct lineages within this species complex: O. eremita in the west and O. barnabita Motschulsky, 1845, in the east. Interestingly, beetles confined to Sicily have been described as a distinct species, O. cristinae Sparacio, 1994, based on morphological traits. Only few Sicilian specimens were included in the former genetic analysis, and the results led to a still questionable taxonomic rank for these populations. To explore the robustness of the previous taxonomic arrangement for O. cristinae, a combination of genetic, morphological and pheromonal analyses was used. A 617-bp fragment of the COI gene, aligned with O. cristinae and O. eremita sequences already available in GenBank, showed a clear genetic divergence between the two species (interspecific mean distance = 6.6%). Moreover, results from AFLP markers sustained the distinction of the two species. In addition, geometric morphometric analyses of the shape of male genitalia revealed a clear differentiation between the two species. Via scent analysis and field trapping, we demonstrated the production of the sex pheromone (R)-(+)-γ-decalactone by males of O. cristinae, the attraction by conspecific individuals (mostly females) to this compound, and a lack of antagonistic effect of (S)-(-)-γ-decalactone. The fact that O. eremita and O. eremita use the same compound for mate finding suggests that this sex pheromone has not undergone a differentiation and probably the allopatry of these two species compensates for the absence of a mechanism to avoid cross-attraction. Our genetic and morphological data support the divergence of the two species and confirm the species status for O. cristinae, while sex pheromones are confirmed to be invariant among different species of the genus Osmoderma.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Zoological Systematics and Evolutionary Research
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.