Abstract

One of the industries that makes a significant contribution to the overall amount of greenhouse gas emissions around the globe is agriculture. In this regard, the use of bioenergy in the agricultural and food processing industries might benefit from the implementation of circular economy techniques. Despite the fact that just roughly 9% of the global economy is circular, there have been worldwide efforts to improve that reality. The linear economy, commonly known as the "take-make-use-dispose" model, is in sharp contrast to the circular economy, also known as "grow-make-use-restore," which seeks to influence the flow of materials and energy in order to maximize the benefits to the environment and minimize any associated costs. Garbage-to-energy, also known as WTE, is the focus of both academics and businesses as a direct result of the increasingly diminishing number of energy supplies and the ever-increasing amount of garbage. This project intends to turn trash into profit, lessen the impact waste has on the environment, and generate energy from biowaste by conceptualizing a focus on the supply chain characteristics of waste-to-energy processing. The adoption of a waste-to-energy (WTE) supply chain as a district energy system should be a viable solution toward a circular industrial economy that can solve energy consumption, waste management, and greenhouse gas emission concerns all at once. In the framework of a "circular economy," this study investigates how the management of waste-to-energy supply chains impacts the performance of businesses. The present investigation makes use of life cycle assessments, technical innovation, waste-to-energy conversion, and capacities related to circular economies. The study makes use of data obtained from an online survey that was administered between March 2021 and November 2021 to employees of 285 representative samples drawn from 457 European enterprises and firms that have accepted the concepts of the circular economy. The data is examined using a technique known as partial least squares structural equation modeling (PLS-SEM for short). The findings indicate that waste-to-energy serves as a mediator between the life cycle assessment and the capabilities of the circular economy and that sustainable supply chain management, sustainable supply chain design, technological progress, and waste-to-energy all have positive effects on these metrics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call