Abstract
Predicting the conformational preferences of flexible compounds is a challenging problem in drug design, where the recognition between ligand and receptor is affected by the ability of the interacting partners to adopt a favorable conformation for the binding. To explore the conformational space of flexible ligands and to obtain the relative free energy of the conformation wells, we have recently reported a multilevel computational strategy that relies on the predominant-state approximation-where the conformational space is partitioned into distinct conformational wells-and combines a low-level method for sampling the conformational minima and high-level ab initio calculations for estimating their relative stability. In this study, we assess the performance of the multilevel strategy for predicting the conformational preferences of a series of structurally related phenylethylamines and streptomycin in aqueous solution. The charged nature of these compounds and the chemical complexity of streptomycin make them a challenging test for the multilevel approach. Furthermore, we explore the suitability of using a molecular mechanics approach as a source of approximate ensembles in the first stage of the multilevel strategy. The results support the reliability of the multilevel approach for obtaining an accurate conformational ensemble of small (bio)organic molecules in aqueous solution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.