Abstract

The mineralogy and environmental history of Mars are being extensively studied through remote sensing observations paired with laboratory and in situ experiments. A significant portion of these experiments is being devoted to the identification and mapping of different iron oxides present in the Martian terrains. Among these compounds, goethite has been an object of great interest since its occurrence can be interpreted as mineralogical evidence of past aqueous activity on those landscapes. Although such experiments can provide valuable information regarding the presence of these minerals, the scope of the resulting observations may be hindered by logistics and cost-related constraints. We believe that predictive computer simulations can be employed to mitigate some of these constraints and contribute to the generation and validation of hypotheses in this area. Accordingly, we propose the use of SPLITS (Spectral Light Transport Model for Sand) in investigations involving the spectral signatures of iron-bearing regions of Mars. In this paper, we initially demonstrate the predictive capabilities of the SPLITS model in this context through qualitative comparisons of modeled results with actual observations and measured data. Using the resulting modeled reflectance curves as our baseline data, we then perform a series of controlled computational experiments to investigate how variations on goethite and hematite content affect the spectral responses of Martian sand-textured soils.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.