Abstract

To meet the rising demand for cereal-based food products, it is essential to create parent lines for hybrid development. Evaluating the sensitivity of maize genotypes to gamma rays is critical for successful mass irradiation to induce mutations. This study aimed to assess how maize genotypes respond to gamma radiation and determine an effective dosage for mutation breeding. Six maize genotypes were subjected to gamma radiation doses ranging from 0 to 750 Gy (s) 60Co. The irradiated seeds were evaluated in controlled conditions and then planted in the field for the assessment of physio-agronomic traits. The lethal dose (LD50) was established based on the germination rate of the M1 generation. Results demonstrated a decrease in germination percentage, plant height, survival rate, root length, and plant photosynthetic rate with escalating gamma radiation doses. The mean LD50, determined from the germination data, was 254.3 Gy. The radiation dosage range of 206.71–301.95 Gy proved effective in influencing both quantitative and qualitative characteristics. These findings provide valuable insights into the efficient utilization of gamma radiation in expediting the development of promising parent lines, which can be instrumental in hybridization efforts to produce superior maize varieties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call