Abstract

Ultraviolet light crossing the ozone layer in the atmospheric barrier affects all forms of living beings on earth. In eukaryotic cells, the nucleotide excision repair (NER) pathway protects the DNA by removing cyclobutane pyrimidine dimers (CPDs) and 6-4-photoproduct (6-4-PP) lesions caused by ultraviolet (UV) light, allowing cells to proliferate. On the other hand, adhesion and invasion processes, primarily regulated by the typical Rho GTPases Rho, Rac, and Cdc42, are also affected by UV radiation effects. Studies focused on determining whether or not these GTPases might affect the NER pathway in different cell models are enlightening and should start with classical experimental methodologies. In this chapter we describe two methods (host cell reactivation assay, or HCR, and slot-blots for CPDs and 6-4-PPs) to assess the direct or indirect involvement of these three GTPases on the NER pathway.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.