Abstract

Virtual clinical trials (VCTs) are growing in popularity as a tool for quantitatively predicting heterogeneous treatment responses across a population. In the context of a VCT, a plausible patient is an instance of a mathematical model with parameter (or attribute) values chosen to reflect features of the disease and response to treatment for that particular patient. A number of techniques have been introduced to determine the set of model parametrizations to include in a virtual patient cohort. These methodologies generally start with a prior distribution for each model parameter and utilize some criteria to determine whether a parameter set sampled from the priors should be included or excluded from the plausible population. No standard technique exists, however, for generating these prior distributions and choosing the inclusion/exclusion criteria. In this work, we rigorously quantify the impact that VCT design choices have on VCT predictions. Rather than use real data and a complex mathematical model, a spatial model of radiotherapy is used to generate simulated patient data and the mathematical model used to describe the patient data is a two-parameter ordinary differential equations model. This controlled setup allows us to isolate the impact of both the prior distribution and the inclusion/exclusion criteria on both the heterogeneity of plausible populations and on predicted treatment response. We find that the prior distribution, rather than the inclusion/exclusion criteria, has a larger impact on the heterogeneity of the plausible population. Yet, the percent of treatment responders in the plausible population was more sensitive to the inclusion/exclusion criteria utilized. This foundational understanding of the role of virtual clinical trial design should help inform the development of future VCTs that use more complex models and real data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.