Abstract

Purine nucleoside phosphorylase from Mycobacterium tuberculosis (MtPNP), encoded by deoD gene (Rv3307), is an enzyme from the purine salvage pathway, which has been widely studied as a molecular target for the development of inhibitors with potential antimycobacterial activity. However, the role of MtPNP in tuberculosis pathogenesis and dormancy is still unknown. The present work aims to construct a deoD knockout strain from M. tuberculosis, to evaluate the role of MtPNP in the growth of M. tuberculosis under oxygenated condition and in a dormancy model, and to assess whether deoD gene is important for M. tuberculosis invasion and growth in macrophages. The construction of a knockout strain for deoD gene was confirmed at DNA level by PCR and protein level by Western blot and LC-MS/MS. The deoD gene is not required for M. tuberculosis growth and survival under oxygenated and hypoxic conditions. The disruption of deoD gene did not affect mycobacterial ability to invade and grow in RAW 264.7 cells under the experimental conditions employed here.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call