Abstract

IntroductionThe occurrence of “secondary crashes” is one of the critical yet understudied highway safety issues. Induced by the primary crashes, the occurrence of secondary crashes does not only increase traffic delays but also the risk of inducing additional incidents. Many highway agencies are highly interested in the implementation of safety countermeasures to reduce this type of crashes. However, due to the limited understanding of the key contributing factors, they face a great challenge for determining the most appropriate countermeasures. MethodTo bridge this gap, this study makes important contributions to the existing literature of secondary incidents by developing a novel methodology to assess the risk of having secondary crashes on highways. The proposed methodology consists of two major components, namely: (a) accurate identification of secondary crashes and (b) statistically robust assessment of causal effects of contributing factors. The first component is concerned with the development of an improved identification approach for secondary accidents that relies on the rich traffic information obtained from traffic sensors. The second component of the proposed methodology is aimed at understanding the key mechanisms that are hypothesized to cause secondary crashes through the use of a modified logistic regression model that can efficiently deal with relatively rare events such as secondary incidents. The feasibility and improved performance of using the proposed methodology are tested using real-world crash and traffic flow data. ResultsThe risk of inducing secondary crashes after the occurrence of individual primary crashes under different circumstances is studied by employing the estimated regression model. Marginal effect of each factor on the risk of secondary crashes is also quantified and important contributing factors are highlighted and discussed. Practical applicationsMassive sensor data can be used to support the identification of secondary crashes. The occurrence mechanism of these secondary crashes can be investigate by the proposed model. Understanding the mechanism helps deploy appropriate countermeasures to mitigate or prevent the secondary crashes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.