Abstract

Rabies is a globally distributed virus that causes approximately 60,00 human deaths annually with >99% of cases caused by dog bites. Australia is currently canine rabies free. However, the recent eastward spread of rabies in the Indonesian archipelago has increased the probability of rabies entry into northern Australian communities. In addition, many northern Australian communities have large populations of free-roaming dogs, capable of maintaining rabies should an incursion occur. A risk assessment of rabies entry and transmission into these communities is needed to target control and surveillance measures. Illegal transportation of rabies-infected dogs via boat landings is a high-risk entry pathway and was the focus of the current study. A quantitative, stochastic, risk assessment model was developed to evaluate the risk of rabies entry into north-west Cape York Peninsula, Australia, and rabies introduction to resident dogs in one of the communities via transport of rabies-infected dogs on illegal Indonesian fishing boats. Parameter distributions were derived from expert opinion, literature, and analysis of field studies. The estimated median probability of rabies entry into north-west Cape York Peninsula and into Seisia from individual fishing boats was 1.9 × 10−4/boat and 8.7 × 10−6/boat, respectively. The estimated annual probability that at least one rabies-infected dog enters north-west Cape York Peninsula and into Seisia was 5.5 × 10−3 and 3.5 × 10−4, respectively. The estimated median probability of rabies introduction into Seisia was 4.7 × 10−8/boat, and the estimated annual probability that at least one rabies-infected dog causes rabies transmission in a resident Seisia dog was 8.3 × 10−5. Sensitivity analysis using the Sobol method highlighted some parameters as influential, including but not limited to the prevalence of rabies in Indonesia, the probability of a dog on board an Indonesian fishing boat, and the probability of a Seisia dog being on the beach. Overall, the probabilities of rabies entry into north-west Cape York Peninsula and rabies introduction into Seisia are low. However, the potential devastating consequences of a rabies incursion in this region make this a non-negligible risk.

Highlights

  • Rabies is a vaccine-preventable viral infection that is globally distributed and causes approximately 59,000 human deaths annually [1]

  • We identified potential illegal routes of entry using qualitative methods and used a quantitative risk assessment model to evaluate the risk of rabies entry into the Northern Peninsula Area (NPA) and rabies entry and transmission to resident dogs in a community in the NPA

  • Number of Boats Arriving in the North-West Cape York Peninsula (Scenario 1) and Seisia (Scenario 2) per Year The median number of Indonesian fishing boats arriving in north-west Cape York Peninsula per year was estimated to be 6 (95% percentile 3–17 boats) based on the combined individual PERT distributions from workshop information (Figure 4A)

Read more

Summary

Introduction

Rabies is a vaccine-preventable viral infection that is globally distributed and causes approximately 59,000 human deaths annually [1]. Surveillance and biosecurity measures (for example, quarantine, import restrictions, or coastal patrols) are important in rabiesfree regions to prevent potential rabies incursions. The estimated probability that at least one rabies-infected dog from an Indonesian fishing boat transmits rabies to a Seisia dog per year was 8.3 × 10−5 (SE 1.4 × 10−4). The estimated median time between events of one rabies-infected dog entering and exposing rabies to a Seisia dog is 6,777.0 years (95% percentile 247.2–36,368.8 years).

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call