Abstract

Reliable forage analysis is crucial for proper ration formulation of ruminant herds. Through its fast, inexpensive, and non-destructive procedures, near-infrared spectroscopy (NIRS) has become a valuable method for forage evaluating. Notwithstanding, NIRS needs calibration before routine analysis. In addition, to evaluate the best method for lignin quantification in Urochloa spp. grasses is crucial under a digestibility perspective in grass-fed ruminant production. The aims of this study were to use 149 samples from different Urochloa species to develop NIRS calibration curves (partial least squares regressions) for acid detergent lignin (ADL), acetyl bromide lignin (ABL), as well as for ash, cell wall (CW), neutral detergent fiber (NDF), acid detergent fiber (ADF), in vitro DM digestibility (IVDMD), and in vitro NDF digestibility (IVNDFD). Moreover, the aim of this study was to correlate the in vitro digestibility with lignin quantification methods: ADL and ABL. Near-infrared spectroscopy showed potential for the quantification of Urochloa spp. properties, such as lignin contents (ADL and ABL) and ash, CW, NDF, ADF, IVDMD, and IVNDFD. However, calibrations performed using NIRS to measure ADF, ADL, IVDMD, and IVNDFD need to be thought about with caution before their utilization as a routine analysis for determining the potential for nutrient measurement and digestibility of Urochloa spp. grasses. In addition, the ABL method used for lignin quantification was better correlated with IVDMD and IVNDFD than the ADL method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.