Abstract

Water quality monitoring data are usually used independently to report on the condition of streams and watersheds. For example, watersheds are often rated as good, fair, or poor with regard to a single stressor or with regard to an index of biotic integrity. The utility of monitoring data may be enhanced by integrating stressor-response information with the observed stressor data, and reporting stressor levels in terms of their relative effects upon valued ecological resources. We estimated stressor-response relationships at the regional scale using data collected in the Eastern Cornbelt Plains Ecoregion of Ohio. Generalized additive models were used to visualize stressor-response relationships. Piecewise linear functions and simple linear functions were then used to parameterize the observed responses. Parameters derived from the regional models were used to scale observations of stressors in the Big Darby Creek watershed, OH. After scaling, stressors were compared in terms of their spatial distribution and in terms of the severity with which they influenced the biological endpoint of interest. Stressors most strongly associated with the current ecological condition of the watershed were identified. In the Big Darby Creek watershed, decreases in substrate quality were associated with the most severe decrements in biological condition. At smaller decrements in biological condition, three stressors were important: substrate quality, riparian quality, and increased concentrations of NOx.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call