Abstract

Methane emissions from oil and gas production provide an important contribution to global warming. We investigate 2020 emissions from the largest gas field in Algeria, Hassi R'Mel, and the oil-production-dominated area Hassi Messaoud. We use methane data from the high-resolution (20 m) Sentinel-2 instruments to identify and estimate emission time series for 11 superemitters (including 10 unlit flares). We integrate this information in a transport model inversion that uses methane data from the coarser (7 km × 5.5 km) but higher-precision TROPOMI instrument to estimate emissions from both the 11 superemitters (>1 t/h individually) and the remaining diffuse area source (not detected as point sources with Sentinel-2). Compared to a bottom-up inventory for 2019 that is aligned with UNFCCC-reported emissions, we find that 2020 emissions in Hassi R'Mel (0.16 [0.11-0.22] Tg/yr) are lower by 53 [24-73]%, and emissions in Hassi Messaoud (0.22 [0.13-0.28] Tg/yr) are higher by 79 [4-188]%. Our analysis indicates that a larger fraction of Algeria's methane emissions (∼75%) come from oil production than national reporting suggests (5%). Although in both regions the diffuse area source constitutes the majority of emissions, relatively few satellite-detected superemitters provide a significant contribution (24 [12-40]% in Hassi R'Mel; 49 [27-71]% in Hassi Messaoud), indicating that mitigation efforts should address both. Our synergistic use of Sentinel-2 and TROPOMI can produce a unique and detailed emission characterization of oil and gas production areas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.