Abstract

In this paper, we assessed the quantum mechanical level of theory for prediction of linear and nonlinear optical (NLO) properties of push-pull organic molecules. The electric dipole moment (μ), mean polarizability ([Symbol: see text]α[Symbol: see text]) and total static first hyperpolarizability (βt) were calculated for a set of benzene, styrene, biphenyl and stilbene derivatives using HF, MP2 and DFT (31 different functionals) levels and over 71 distinct basis sets. In addition, we propose two new basis sets, NLO-V and aNLO-V, for NLO properties calculations. As the main outcomes it is shown that long-range corrected DFT functionals such as M062X, ωB97, cam-B3LYP, LC-BLYP and LC-ωPBE work satisfactorily for NLO properties when appropriate basis sets such as those proposed here (NLO-V or aNLO-V) are used. For most molecules with β ranging from 0 to 190esu, the average absolute deviation was 13.2esu for NLO-V basis sets, compared to 27.2esu for the standard 6-31G(2d) basis set. Therefore, we conclude that the new basis sets proposed here (NLO-V and aNLO-V), together with the cam-B3LYP functional, make an affordable calculation scheme to predict NLO properties of large organic molecules.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call