Abstract

Theoretical studies have shown that the use of simultaneous mono- and bistatic synthetic aperture radar (SAR) data could be beneficial to agriculture and soil moisture monitoring. This study makes use of extensive ground-truth measurements and synchronous high-resolution fully polarimetric mono- and bistatic airborne SAR data in L-band to assess and compare the sensitivity of mono- and multistatic systems to the maize canopy row structure and biophysical variables, as well as to soil moisture and surface roughness in both vegetated and bare fields. The effect of the row structure of maize crops is assessed through the impact of the orientation of the planting rows relative to the sensor beam on microwave scattering measurements. The results of this analysis suggest that the row orientation of maize crops has a significant influence on both mono- and bistatic scattering measurements in both copolarizations, and especially, in HH, while the cross polarizations are not affected. Furthermore, the study also shows through a linear regression analysis that bistatic data, even with a very small bistatic baseline, can provide valuable additional information for maize crop biophysical variable retrieval, which however does not appear to be the case for soil moisture retrieval over bare soils.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call