Abstract

Soil moisture is an essential hydrological variable for a suite of hydrological applications. Its spatio-temporal variability can be estimated using satellite remote sensing (e.g., SMOS and SMAP) and in-situ measurements. However, both have their own strengths and limitations. For example, remote sensing has the strength of maintaining the spatial variability of near-surface soil moisture, while in-situ measurements are accurate and preserve the dynamics range of soil moisture at both surface and larger depths. Hence, this study is aimed at (1) merging the strength of SMAP with in-situ measurements and (2) exploring the effectiveness of merged SMAP/in-situ soil moisture in improving ensemble streamflow forecasts. The conditional merging technique was adopted to merge the SMAP-enhanced soil moisture (9 km) and its downscaled version (1 km) separately with the in-situ soil moisture collected over the au Saumon watershed, a 1025 km2 watershed located in Eastern Canada. The random forest machine learning technique was used for downscaling of the near-surface SMAP-enhanced soil moisture to 1 km resolution, whereas the exponential filter was used for vertical extrapolation of the SMAP near-surface soil moisture. A simple data assimilation technique known as direct insertion was used to update the topsoil layer of a physically-based distributed hydrological model with four soil moisture products: (1) the merged SMAP/in-situ soil moisture at 9 and 1 km resolutions; (2) the original SMAP-enhanced (9 km), (3) downscaled SMAP-enhanced (1 km), and (4) interpolated in-situ surface soil moisture. In addition, the vertically extrapolated merged SMAP/in-situ soil moisture and subsurface (rootzone) in-situ soil moisture were used to update the intermediate layer of the model. Results indicate that downscaling of the SMAP-enhanced soil moisture to 1 km resolution improved the spatial variability of soil moisture while maintaining the spatial pattern of its original counterpart. Similarly, merging of the SMAP with in- situ soil moisture preserved the dynamic range of in-situ soil moisture and maintained the spatial heterogeneity of SMAP soil moisture. Updating of the top layer of the model with the 1 km merged SMAP/in-situ soil moisture improved the ensemble streamflow forecast compared to the model updated with either the SMAP-enhanced or in-situ soil moisture alone. On the other hand, updating the top and intermediate layers of the model with surface and vertically extrapolated SMAP/in-situ soil moisture, respectively, did not further improve the accuracy of the ensemble streamflow forecast. Overall, this study demonstrated the potential of merging the SMAP and in-situ soil moisture for streamflow forecast.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call