Abstract

Several density functional methods with corrections for long-range dispersion interactions are evaluated for their capabilities to describe the crystallographic lattice properties of a set of 26 high nitrogen-content salts relevant for energetic materials applications. Computations were done using methods that ranged from adding atom-atom dispersion corrections with environment-independent and environment-dependent coefficients, to methods that incorporate dispersion effects via dispersion-corrected atom-centered potentials (DCACP), to methods that include nonlocal corrections. Among the functionals tested, the most successful is the nonlocal optPBE-vdW functional of Klimeš and Michaelides that predicts unit cell volumes for all crystals of the reference set within the target error range of ±3% and gives individual lattice parameters with a mean average percent error of less than 0.81%. The DCACP, Grimme's D3, and Becke and Johnson's exchange-hole (XDM) methods, when used with the BLYP, PBE, and B86b functionals, respectively, are also quite successful at predicting the lattice parameters of the test set.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.