Abstract

As intelligent transportation systems are becoming more and more prevalent, the relevance of automatic surveillance systems grows larger. While such systems rely heavily on video signals, other types of signals can be used as well to monitor the security of passengers. The present article proposes an audio-based intelligent system for surveillance in public transportation, investigating the use of some state-of-the-art artificial intelligence methods for the automatic detection of screams and shouts. We present test results produced on a database of sounds occurring in subway trains in real working conditions, by classifying sounds into screams, shouts and other categories using different Neural Network architectures. The relevance of these architectures in the analysis of audio signals is analyzed. We report encouraging results, given the difficulty of the task, especially when a high level of surrounding noise is present.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.