Abstract

SummaryIn this work, we evaluate several emerging parallel programming models: Kokkos, RAJA, OpenACC, and OpenMP 4.0, against the mature CUDA and OpenCL APIs. Each model has been used to port Tealeaf, a miniature proxy application, or mini app, that solves the heat conduction equation and belongs to the Mantevo Project. We find that the best performance is achieved with architecture‐specific implementations but that, in many cases, the performance portable models are able to solve the same problems to within a 5% to 30% performance penalty. While the models expose varying levels of complexity to the developer, they all achieve reasonable performance with this application. As such, if this small performance penalty is permissible for a problem domain, we believe that productivity and development complexity can be considered the major differentiators when choosing a modern parallel programming model to develop applications like Tealeaf.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.