Abstract

Abstract The ensemble Kalman filter provides an easy-to-use, flexible, and efficient option for data assimilation problems. One of its attractive features in land surface applications is its ability to provide distributional information about variables, such as soil moisture, that can be highly skewed or even bimodal. The ensemble Kalman filter relies on normality approximations that improve its efficiency but can also compromise the accuracy of its distributional estimates. The effects of these approximations can be evaluated by comparing the conditional marginal distributions and moments estimated by the ensemble Kalman filter with those obtained from a sequential importance resampling (SIR) particle filter, which gives exact solutions for large ensemble sizes. Comparisons for two land surface examples indicate that the ensemble Kalman filter is generally able to reproduce nonnormal soil moisture behavior, including the skewness that occurs when the soil is either very wet or very dry. Its conditional mean estimates are very close to those generated by the SIR filter. Its higher-order conditional moments are somewhat less accurate than the means. Overall, the ensemble Kalman filter appears to provide a good approximation for nonlinear, nonnormal land surface problems, despite its dependence on normality assumptions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call