Abstract

This paper applies quasi-steady-state photoluminescence (QSS-PL) and photoluminescence imaging to characterize the recombination properties of various surface passivation techniques. Particular interest is given to the performance at low excess carrier densities where many types of surface passivation show a strong increase in surface recombination velocity. These techniques are then used to further understand the ability of parasitic effects such as nonuniform illumination, edge recombination and areas of high recombination to affect these measurements. Furthermore, a new technique for edge isolation using laser doping is shown to be effective against the effect of edge recombination. This technique is useful to implement when using QSS-PL to analyze small samples as carriers conducted to the edge regions can dramatically alter the effective lifetime in low injection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.