Abstract

A reasonable description of the conformation energies of each of the amino acids is crucial for modeling protein structures and dynamics. We here used 20 tetrapeptides (ACE-ALA-X-ALA-NME, X = one of 20 amino acids) in 5 conformations (right-handed helix (αR), left-handed helix (αL), β-sheet (β), antiparallel β-sheet (βa), and polyproline II (PPII)) as structural models to investigate the relative conformation energies at the MP2/cc-pVTZ//B3LYP/6-31G** level. The results indicate that the energetic pattern (the order and the energy gap) of the five conformations bears certain resemblances among the amino acids in the same class but is quite different among the amino acids in the different classes (e.g., hydrophobic, aromatic, polar and charged classes). The MP2 energies are then used to statistically evaluate the overall performance of various methods including density functional methods (M05-2X, PBE, and B3LYP), semiempirical methods (AM1, PM3, and PM3MM), empirical polarizable force fields (AMOEBA and AM...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.