Abstract

This paper presents the implementation of a biomass-fuelled District Heating System (DHS), as a part of a deep energy renovation exercise to achieve a climate-resilient campus with minimum carbon dioxide emissions. The case study is carried out for the University of Valladolid, an average-sized university in Spain, with a continental weather climate.Prior to renovation, the different building blocks had a wide-ranging level of fossil fuel consumption for space heating and domestic hot water ranging between 60 and 430 kWh/m2·year. The application of this centralised heating system allows to achieve the minimum threshold for near zero-energy buildings (nZEB) of 100–120 kWh/m2, in accordance with the Spanish Standards. These values correspond to the maximum European indicators for offices in continental weather conditions. Results of this comprehensive study show that 15 out of the 19 buildings reached the nZEB target, due to the proposed strategy. The overall carbon dioxide emissions have dropped by 92.69% as compared to the original fossil-fuel powered boiler, thus bringing carbon dioxide emissions down to 1.57 kgCO2/m2·y.Therefore, it is shown that deep energy renovation strategies through renewable energy DHS have the potential of achieving nZEB for universities in continental weather conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call