Abstract
Public universities face the challenge of retrofitting the actual campus buildings into nearly zero-energy buildings (NZEB). In this study, a novel methodology for evaluating historical energy use and renewable energy production for all the buildings of a university, including hourly, daily and monthly data assessments is presented. This analysis is useful as a baseline for comparisons with future energy retrofits and enables determining the current gap between actual energy indicators at building and campus levels and the established limits for NZEB non-residential buildings in the European Union. The methodology is applied to a case study at the University of Lleida, a typical average-size university in Spain. Results show a wide variation in energy use among campus buildings, ranging between 50 and 470 kWh/m2 year. Constant or slightly increasing energy use and decreasing trends in renewable energy generation are observed. The daily electricity profiles have shown similar patterns among buildings and substantial potential energy savings during unoccupied periods. In the NZEB analysis, the average non-renewable primary energy use is about 4 times higher than the maximum estimated Spanish threshold range of 45–55 kWh/m2 year. Deep energy renovation strategies are, thus, needed for universities to meet EU NZEB targets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Energy and Environmental Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.