Abstract

High levels of arsenic in groundwater and drinking water represent a major health problem worldwide. Drinking arsenic-contaminated groundwater is a likely cause of blackfoot disease (BFD) in Taiwan, but mechanisms controlling the mobilization of arsenic present at elevated concentrations within aquifers remain understudied. Microcosm experiments using sediments from arsenic contaminated shallow alluvial aquifers in the blackfoot disease endemic area showed simultaneous microbial reduction of Fe(III) and As(V). Significant soluble Fe(II) (0.23±0.03mM) in pore waters and mobilization of As(III) (206.7±21.2nM) occurred during the first week. Aqueous Fe(II) and As(III) respectively reached concentrations of 0.27±0.01mM and 571.4±63.3nM after 8 weeks. We also showed that the addition of acetate caused a further increase in aqueous Fe(II) but the dissolved arsenic did not increase. We further isolated an As(V)-reducing bacterium native to aquifer sediments which showed that the direct enzymatic reduction of As(V) to the potentially more-soluble As(III) in pore water is possible in this aquifer. Our results provide evidence that microorganisms can mediate the release of sedimentary arsenic to groundwater in this region and the capacity for arsenic release was not limited by the availability of electron donors in the sediments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call