Abstract
In heavy metal-contaminated areas, the simultaneous occurrence of increasing microplastic pollution and persistent acid rain poses a serious threat to food security. However, the mechanisms of combined exposure to microplastics (MP) and acid rain (AR) on the toxicity of cadmium (Cd) in rice seedlings remain unclear. Our study investigated the combined effects of exposure to polyvinyl chloride microplastics and AR (pH 4.0) on the toxicity of Cd (0.3, 3, and 10 mg/L) in rice seedlings. The results showed that at low Cd concentrations, the combined exposure had no significant effect, but at high Cd concentrations, it alleviated the effects of Cd stress. The combined application of MP and AR alleviated the inhibitory effects of Cd on seedling growth and chlorophyll content. Under high Cd concentrations (10 mg/L), the simultaneous addition of MP and AR significantly reduced the production of reactive oxygen species (ROS), the content of malondialdehyde (MDA), and the activity of the superoxide dismutase (SOD). Compared with AR or MP alone, the combination of MP and AR reduced root cell damage and Cd accumulation in rice seedlings. Transcriptomic analysis confirmed that under high Cd concentrations, the combination of MP and AR altered the expression levels of genes related to Cd transport, uptake, MAPK kinase, GSTs, MTs, and transcription factors, producing a synergistic effect on oxidative stress and glutathione metabolism. These results indicate that co-exposure to MP and AR affected the toxicity of Cd in rice seedlings and alleviated Cd toxicity under high Cd concentrations to some extent. These findings provide a theoretical basis for evaluating the toxicological effects of microplastic and acid rain pollution on crop growth in areas contaminated with heavy metals, and are important for safe agricultural production and ecological security.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.