Abstract

The tree species, elevation and climate change jointly influenced the tree-ring growth, directing us to carefully consider the comprehensive effects of these variables when performing large-scale and multi-species-based dendroclimatic studies. The rate of tree growth varies by species and is influenced by elevation and climate gradients. Assessing the influence of these variables on tree-ring growth can improve projections for tree growth under future climate conditions. Here, we evaluate the relationships between tree species, elevation, climate and tree-ring growth in the Qilian Mountains of northwest China by using the tree-ring records of Qinghai spruce (Picea crassifolia) and Qilian juniper (Juniperus przewalskii) trees. The rotated principal component analysis was applied to examine the individual tree growth and the associated influencing factors. The tree-ring chronologies were used to compare tree growth patterns and the climate–growth relationships between the two species and elevations. The results indicated that trees from the Qinghai spruce sites showed similar growth patterns and climate–growth relationships, even though the elevation differed. The Qilian juniper chronologies from the high and low elevation sites revealed different growth patterns during recent decades that were closely related to the discrepant climate–growth relationships with the temperatures and the recent warming trend. The differences in tree growth patterns between both species and elevation could be attributed to plant physiological traits. The results of this study demonstrate the impact of tree species, elevation and climate change on tree-ring growth, suggesting that accounting for the influences of these variables could improve large-scale and multi-species-based dendroclimatic studies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call