Abstract
Northeast India (NEI) experiences frequent thunderstorms during the pre-monsoon season, which can be catastrophic, resulting in loss of life and damage to infrastructure and property. The Shillong Plateau (SP) has been identified as a key factor in triggering these thunderstorms over NEI. Our study focuses on monitoring changes in thermodynamic indicators over NEI to assess the impact of the SP on the initiation and propagation of thunderstorms. The results demonstrate a significant increase in thermodynamic index values across NEI when the SP topography is elevated, indicating an increase in thunderstorm activity. Conversely, when the SP topography is reduced, there is a decrease in these indicators, corresponding with lower thunderstorm intensity. Notably, a lower SP topography is associated with increased precipitation, whereas a higher SP topography is linked to decreased precipitation. These findings underscore the crucial role of SP topography in influencing pre-monsoon thunderstorms over NEI, which has implications for understanding and predicting regional weather patterns. Keywords: Thunderstorms; Thermodynamic Indices; Topography; Shillong Plateau; WRF
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.