Abstract

This article addresses the yaw stability of articulated vehicles by assessing the influence of the road-tire friction coefficient on the convergence region of a particular equilibrium condition. In addition, the boundaries of this region are compared to the boundaries of the non-jackknife and non-rollover regions to distinguish the instability phenomenon, jackknife or roll-over, responsible for this delimitation. The vehicle configuration considered in this analysis is composed by one tractor unit and one towed unit connected through an articulation point, for instance, a tractor-semitrailer combination. A nonlinear articulated bicycle model with four degrees of freedom is used together with a nonlinear lateral force tire model. To estimate the convergence region, the phase trajectory method is used. The equations of motion of the mathematical model are numerically integrated for different initial conditions in the phase plane, and the state orbits are monitored in order to verify the convergence point and the occurrence of instability events. In all cases, the longitudinal force on each tire, such as traction and braking, is not considered. The results show the existence of convergence regions delimited only by jackknife events, for low values of the friction coefficient, and only by rollover events, for high values of the friction coefficient. Moreover, the transition between these two conditions as the friction coefficient is changed is graphically presented. The main contributions of this article are the identification of the abrupt reduction of the convergence region as the value of the friction coefficient increases and the distinction of the instability events, jackknife or rollover, that define the boundaries of the convergence region.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.