Abstract

ObjectiveTo analyze the intrarenal hydrodynamic processes and clearance of stone fragments during percutaneous nephrolithotomy (PCNL) using numerical and physical models. Materials and methodsCOMSOL multiphysics software was used to simulate irrigation flows and transport of particles in a kidney model based on computerized tomographic acquisition. A similarly shaped physical model with solid particles was constructed, and PCNL was simulated using nephroscopes. The particles were tracked by a digital camera. Particle clearance in both models was compared at various flow velocities and angles. ResultsThe numerical model predicted a significantly increased particle clearance with high-velocity irrigation (0.25 vs 1 m/s, 12% vs 70%, respectively: P < .0001), as did the perpendicular positioning of the instrument (45° vs 90°, 1% vs 70%: P < .0001). These results were validated in the physical model with a correlation of r = 0.98. Particle clearance occurred only in the directly irrigated calyx. The flow and the particle movements in the other calices were negligible. The calculated intrarenal pressure at the maximal velocity reached 15.6 cmH2O. ConclusionEffective clearance of particles is achieved when irrigation is perpendicularly directed to the targeted calyx and enhanced by higher flow velocities. The flow in calyces that are not directly irrigated is ineffectual, and high flows do not significantly increase the intrarenal pressure. Validation of the numerical model by the physical model supports the use of computerized methods for advanced renal hydrodynamic research that may replace the need of some animal and human studies on the clearance of stones during PCNL.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.