Abstract

Interventional therapies such as drug-eluting stents (DES) and drug-coated balloons (DCB) have significantly improved the clinical outcomes of patients with coronary occlusions in recent years. Despite this marked improvement, ischemic cardiovascular disease remains the most common cause of death worldwide. To address this, research efforts are focused on improving the safety and efficacy of the next generation of these devices. However, current experimental methods are unable to account for the influence of atherosclerotic lesions on drug uptake and retention. Therefore, in this study, we used an integrated approach utilizing both in vitro and in silico methods to assess the performance of DCB therapy. This approach was validated against existing in vivo results before being used to numerically estimate the effect of the atheroma. A bolus release of sirolimus was observed with our coating matrix. This, coupled with the rapid saturation of specific and non-specific binding sites observed in our study, indicated that increasing the therapeutic dose coated onto the balloons might not necessarily result in greater uptake and/or retention. Additionally, our findings alluded to an optimal exposure time, dependent on the coating matrix, for the DCBs to be expanded against the vessel. Moreover, our findings suggest that a biphasic drug release profile might be beneficial for establishing and maintaining the saturation of bindings sites within severely occluded vessels. Ultimately, we have demonstrated that computational methods may be capable of assessing the efficacy of DCB therapy as well as predict the influence of atherosclerotic lesions on said efficacy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.