Abstract
The developmental origin of health and diseases theory supports the critical role of the fetal exposure to children's health. We developed a physiologically based pharmacokinetic model for human pregnancy (pPBPK) to simulate the maternal and fetal dosimetry throughout pregnancy. Four models of the placental exchanges of chemicals were assessed on ten chemicals for which maternal and fetal data were available. These models were calibrated using non-animal methods: in vitro (InV) or ex vivo (ExV) data, a semi-empirical relationship (SE), or the limitation by the placental perfusion (PL). They did not impact the maternal pharmacokinetics but provided different profiles in the fetus. The PL and InV models performed well even if the PL model overpredicted the fetal exposure for some substances. The SE and ExV models showed the lowest global performance and the SE model a tendency to underprediction. The comparison of the profiles showed that the PL model predicted an increase in the fetal exposure with the pregnancy age, whereas the ExV model predicted a decrease. For the SE and InV models, a small decrease was predicted during the second trimester. All models but the ExV one, presented the highest fetal exposure at the end of the third trimester. Global sensitivity analyses highlighted the predominant influence of the placental transfers on the fetal exposure, as well as the metabolic clearance and the fraction unbound. Finally, the four transfer models could be considered depending on the framework of the use of the pPBPK model and the availability of data or resources to inform their parametrization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.