Abstract
The 20th century saw notable fluctuations in global temperatures, which significantly impacted agricultural climate zones across the Earth. Focusing on Xinjiang, China, a leading region in machine-picked cotton production, we identified several key thermal indicators influencing the yield, including the sum of active temperatures ≥ 10 °C, the mean temperature in July, the climatological growing season length, the April–May sum of active temperatures, the last frost day, and the defoliant spray time. Using meteorological data from 58 weather stations in Xinjiang, we examined the spatiotemporal trends of these indicators during the 1981–2020 period. Additionally, we attempted to determine the effects of plastic mulching on the sowing area and the zoning area of machine-picked cotton in different suitable zones based on these indicators. In conclusion, the overall thermal resources in Xinjiang are exhibiting an upward trend and show a distribution pattern of “more in the south of Xinjiang than in the north of Xinjiang, and more in the plains and basins than in the mountains”. Under the plastic-mulching mechanism, the zoning area of the suitable zone has increased by 15.7% (2.15 × 103 km2), suggesting that climate warming and the widespread application of mulching technology provide unexplored potential for the most suitable regions for machine-picked cotton in Xinjiang, while the 14.5% (0.26 × 103 km2) and 7.8% (0.17 × 103 km2) reductions in the unsuitable and less suitable zones, respectively, suggest that the planting areas of machine-picked cotton in both the less suitable and unsuitable zones, particularly with the existing regional planning, continue to demonstrate an irrational expansion. Therefore, to sustain Xinjiang’s cotton industry’s resilience and productivity, policymakers need to prioritize proactive land management and sustainable land allocation practices in response to changing climate patterns to optimize cotton production.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.