Abstract
Landfilling is a globally prevalent method for managing municipal solid waste disposal. Nonetheless, the potential for serious contamination and the significant regional disparities in the leachate produced pose varying degrees of risks to groundwater quality. Previous studies have focused on a single landfill or the same geo-climatic conditions, with a limited number of samples having resulted in a narrow distribution of landfill age and scale, which prevents the description of the pattern of change in landfill age and scale. As well as the effect of this change on the contaminants in the landfill leachate and surrounding groundwater is still unclear. Therefore, we sampled and analyzed leachate and surrounding groundwater from 62 landfills with different landfill ages, scales, and operating conditions in a region with dense and varied topography and climate. Aim to explore the effects of different landfill ages, scales, and operating conditions on contaminants in leachate and surrounding groundwater. Findings indicate that pollutant profiles in different media are influenced by the age, scale, and operational status of the landfill, and the impact of leachate on pollutant types and concentrations in groundwater is limited. A significant correlation exists between the concentration of contaminants in the groundwater affected by leaching from the impermeable layer and the age and scale of the landfill when compared to the leachate. The contamination potentials posed by different pollutants vary across environmental media. Total dissolved solids and NH4+-N in leachate presented high contamination potentials, whereas elemental metalloids (Mn, Al, Ba, and Fe) in the surrounding groundwater posed high environmental concerns. These insights furnish new avenues for monitoring, identification, and safeguarding against pollutants in landfills and proximate groundwater, which is imperative for the sustainable management of municipal waste.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.