Abstract

The introduction of Night Vision Goggles (NVGs) into the cockpits of aircraft configured with head-up displays (HUDs) and colored cockpit instruments necessitated the addition of special NVG objective lens filters to ensure NVG/cockpit compatibility. Three classifications have been developed: Class A, B and C, all minus blue filters, but with different transmissivity characteristics customized to make NVGs compatible with particular cockpit configurations. Class C filters, designed for aircraft equipped with holographic HUDs, are constructed of applied reflective coatings with a built-in spectral notch for transmitting the correct light wavelength to make the projected HUD symbology readable. New absorptive glass technology was integrated into the design of an RG-665 minus-blue filter identical to a class B filter but with a physical pinhole and varying glass material thickness to fine tune the filter for optimal transmissivity for NVG/HUD compatibility. A study was conducted to examine the impact these two unique classifications of filters have on visual performance using simulated compatible cockpit lighting in a controlled laboratory. Results indicate the Class C filters significantly outperformed the RG-665 filters with the windscreen condition installed. A discussion of the properties of each type of filter and its effect on NVG visual performance are discussed in this paper.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.