Abstract

The substantial impacts of exogenous pollutants on lake water quality have been extensively reported. Water-sediment factors, which are essential for regulating water quality in river-connected lakes, have not been studied in depth under different hydrological conditions. This study has combined a 31-year water environmental dataset (1991–2021) regarding Dongting Lake and a vector autoregression model (VAR) in order to investigate the impulse response characteristics and contributions of water quality caused by water-sediment factors across different periods. Our analysis suggests that total nitrogen (TN) exhibited a significant increasing trend, whereas total phosphorus (TP) increased to 0.17 mg/L, and then decreased to 0.07 mg/L from 1991 to 2021. The inflow of suspended sediment discharge (SSD) decreased significantly during the study period, mainly because of the decrease in SSD in the three channels (TC). In the pre-Three Gorges Dam (TGD) period, water discharge (WD) and SSD were the Granger causes of TN and TP. In the post-TGD periods this relationship disappeared because of the construction of the TGD, which reduced the inflow of SSD and WD into the lake. Water quality indicators showed an instant response to the shock from themselves with high values, whereas the impulse response of the water quality to water-sediment factors exhibited lagged variations. This meant that the water quality indicators displayed a high impact by themselves across the different periods, with values varying from 67 % to 95 %. Water level (WL) and SSD were the predominant water-sediment factors for TP in the pre-TGD period, with the impact on TP changes accounting for 11 % and 9 %, respectively, whereas the contribution of SSD decreased to 2 % in the post-TGD period. WL was the most crucial water-sediment factor for CODMn during the different periods, with contributions varying from 17 % to 20 %. To improve the water quality of Dongting Lake, in addition to the implementation of strict controls on excessive external nutrient loading, regulating water-sediment factors according to the hydrological features of Dongting Lake during different periods is vital.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.