Abstract

Controlling the spread of respiratory infectious diseases in healthcare settings is important to avoid nosocomial infection. We utilized computational fluid dynamics (CFD) simulation, real-time carbon dioxide (CO2) monitoring, microorganism culturing, and microorganism sequencing to quantitatively assess the exposure risk of healthcare workers to infectious respiratory particles (IRPs) in one lung function room under two ventilation configurations. The original ventilation system supplied 2 air changes per hour (ACH) for fresh air and 2 ACH for recirculated air, while the retrofitted ventilation system supplied 6 ACH of fresh air. Indoor CO2 concentration and microorganism concentration decreased after the retrofit. The ventilation modification significantly improved the discharge efficiency for 5 μm IRPs and 50 μm IRPs. The intake fraction of 5 μm aerosols and 50 μm aerosols for HCW decreased by 0.005% and 0.006%, respectively. This study also reviewed the effectiveness of the above methods when evaluating building retrofit.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call