Abstract
Background: Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a growing class of natural products biosynthesized from a genetically encoded precursor peptide. RiPPs have attracted attention for the ability to generate and screen libraries of these compounds for useful biological activities. To facilitate this screening, it is useful to be able to do so with the leader peptide still present. We assessed the suitability of the microviridin family for these screening experiments by determining their activity with the leader peptide still present. Methods: Modified precursor peptides with the leader present were heterologously expressed in Escherichia coli. Their ability to inhibit elastase was tested with a fluorogenic substrate. HPLC was used to monitor degradation of the modified precursor peptides by elastase. SDS-PAGE was used to determine the ability of immobilized modified precursor peptide to pull down elastase. Results: We found that the fully modified precursor peptide of microviridin B can inhibit the serine protease elastase with a low nanomolar IC50, and that the fully modified precursor with an N-terminal His-tag can mediate interactions between elastase and Ni-NTA resin, all indicating leader peptide removal is not necessary for microviridins to bind their target proteases. Additionally, we found that a bicyclic variant was able to inhibit elastase with the leader peptide still present, although with a roughly 100-fold higher IC50 and being subject to hydrolysis by elastase. Conclusions: These results open a pathway to screening libraries of microviridin variants for improved protease inhibition or other characteristics that can serve as, or as inspirations for, new pharmaceuticals.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.