Abstract
Anthropogenic lanthanum predominantly derived from a point source has become an emerging contaminant in the Rhine River, but little is known about its ecotoxicological consequences on bivalve mollusks. A fundamental requirement of aquatic invertebrate adaptation and survival in stressful habitats is the maintenance of energy homeostasis. As such, the present study tested the impact of four dissolved La concentrations (0, 50, 100 and 200 μM) on the energy balance of the bivalve Corbicula fluminea in the Rhine River. Bivalves were collected at four sampling sites which were contaminated by La to different degrees, thereby allowing to understand the degree of their potential acclimation. With increasing exposure dose, shell and somatic growth (the most energetically expensive biological processes) decreased significantly in clams inhabited the control (uncontaminated) habitat; while less pronounced impacts were evident in all three contaminated sites. In particular, the latter showed virtually unaffected energy (glycogen and protein) reserves. An elucidation of shifts in the organismal energy budget may shed light on such improvement of growth performance. Irrespective of sampling sites, short-term exposure to La caused significant increases of oxygen consumption and ammonia excretion, indicating that the clams promoted their energy metabolism and thereby allocated more energy to essential physiological processes. Noteworthily, the clams originating from contaminated sites displayed virtually unaffected clearance rate, thereby being able to partially fulfill the increased energy demand and eventually alleviating the La-induced physiological interference. Taken together, findings of the present study demonstrate that whether, and to what extent, C. fluminea is able to sustain its energy homeostasis play a central role in the phenotypic plasticity and/or genetic adaptation in the face of anthropogenic La contamination in the Rhine River.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.