Abstract
Abstract The importance of horizontal error correlations in background (i.e., model forecast) fields for large-scale soil moisture estimation is assessed by comparing the performance of one- and three-dimensional ensemble Kalman filters (EnKF) in a twin experiment. Over a domain centered on the U. S. Great Plains, gauge-based precipitation data is used to force the “true” model solution, and reanalysis data for the prior (or background) fields. The difference between the two precipitation datasets is thought to be representative of errors that might be encountered in a global land assimilation system. To ensure realistic conditions the synthetic observations of surface soil moisture match the spatiotemporal pattern and expected errors of retrievals from the Scanning Multichannel Microwave Radiometer (SMMR) on the Nimbus-7 satellite. After filter calibration, average actual estimation errors in the (volumetric) root zone moisture content are 0.015 m3 m−3 for the 3D-EnKF, 0.019 m3 m−3 for the 1D-EnKF, and 0...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.