Abstract
AbstractIn this article, we underpin the intuition that frame semantic information is a useful resource for modelling textual entailment. To this end, we provide a manual frame semantic annotation for the test set used in the second recognizing textual entailment (RTE) challenge – the FrameNet-annotated textual entailment (FATE) corpus – and discuss experiments we conducted on this basis. In particular, our experiments show that the frame semantic lexicon provided by the Berkeley FrameNet project provides surprisingly good coverage for the task at hand. We identify issues of automatic semantic analysis components, as well as insufficient modelling of the information provided by frame semantic analysis as reasons for ambivalent results of current systems based on frame semantics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.