Abstract
Driven by the insatiable demand for construction materials, excessive quarrying for natural aggregates and the demand for raw materials for cement production pose significant environmental challenges, including habitat loss and resource depletion. To address these concerns, this study investigates the use of fibre-reinforced self-compacting concrete (FR-SCC) with high-volume fly ash (HVFA) and varying levels of recycled concrete aggregates (RCA) as substitutes for fine and coarse aggregates. This approach aims to simultaneously address environmental concerns by reducing reliance on virgin resources by utilizing the recycled aggregates and enhancing the performance of concrete through the combined benefits of fly ash and fibre reinforcement. In this study, Self-Compacting Concrete (SCC) mixes were created with 50% of fly ash replaced with conventional cement content, which was taken from the previous literature. Fine and coarse aggregate utilized in this investigation were replaced with processed recycled aggregates at varying levels from 0% to 100% at an interval of 25%, offering a promising solution to alleviate the environmental burden associated with excessive quarrying while contributing to sustainable construction practices. Additionally, replacement levels of aggregate synthetic polypropylene fibres (PF) were added into the concrete matrix up to 1% at an interval of 0.25%. This research contributes to the development of sustainable construction practices by promoting resource efficiency and minimizing environmental impact. The study found that SCC mixes with fibres and recycled aggregates maintained self-compactability, with polypropylene fibres and fly ash improving workability and cohesion. With this combination of materials, the highest strength value of 55.31 MPa was observed and the study promotes sustainable construction by reducing reliance on virgin resources and minimizing environmental impact.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.