Abstract

Full-waveform small-footprint Light Detection and Ranging (LiDAR) is still in the early stages of development for forest structure assessment, in part due to the complex interaction between a laser pulse and the forest structure, which is not yet fully understood. In recent years, simulation studies (which claim absolute ground truth) have sought to tackle this problem. The challenge remains to determine the limit of structural fidelity, in terms of tree structural components, that is required for waveform-based simulation studies. Understanding of such interactions could lead to improved biophysical modeling from LiDAR waveform signals. We present a simulation study that evaluates the impact of tree structural components on received waveform signals across different outgoing pulse widths and scanning angles. The simulation was performed on a small red maple (Acer rubrum) and red oak (Quercus rubra) stand. It was concluded the back-scattered waveform is dominated by the leaves, while the trunks, twigs, and leaf stems had a minimal impact on the signal. Scan angle (0°, 10°, and 20°) and outgoing pulse width (4 ns, 8 ns, and 16 ns) do not have as statistically significant (95% confidence) impact on mean waveform comparison statistics. This result has implications on the level of complexity required for future simulations and for waveform LiDAR based structural algorithm development.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call